<previous  BASIC DC THEORY 2   next>


Before operations with DC circuits can be studied, an understanding of the types
of circuits and common circuit terminology associated with circuits is essential.


Schematic Diagram

Schematic diagrams are the standard means by which we communicate information in electrical
and electronics circuits. On schematic diagrams, the component parts are represented by graphic
symbols, some of which were presented earlier in Module 1. Because graphic symbols are small,
it is possible to have diagrams in a compact form. The symbols and associated lines show how
circuit components are connected and the relationship of those components with one another.
As an example, let us look at a schematic diagram of a two-transistor radio circuit (Figure 9).
This diagram, from left to right, shows the components in the order they are used to convert
radio waves into sound energy. By using this diagram it is possible to trace the operation of the
circuit from beginning to end. Due to this important feature of schematic diagrams, they are
widely used in construction, maintenance, and servicing of all types of electronic circuits.


Schematic diagrams



One-Line Diagram

The one-line, or single-line, diagram shows the components of a circuit by means of single lines
and the appropriate graphic symbols. One-line diagrams show two or more conductors that are
connected between components in the actual circuit. The one-line diagram shows all pertinent
information about the sequence of the circuit, but does not give as much detail as a schematic
diagram. Normally, the one-line diagram is used to show highly complex systems without
showing the actual physical connections between components and individual conductors.
As an example, Figure 10 shows a typical one-line diagram of an electrical substation.


One-line diagram



Block Diagram

A block diagram is used to show the relationship between component groups, or stages in a
circuit. In block form, it shows the path through a circuit from input to output (Figure 11). The
blocks are drawn in the form of squares or rectangles connected by single lines with arrowheads
at the terminal end, showing the direction of the signal path from input to output. Normally, the
necessary information to describe the stages of components is contained in the blocks.


block diagram



Wiring Diagram

A wiring diagram is a very simple way to show wiring connections in an easy-to-follow manner.
These types of diagrams are normally found with home appliances and automobile electrical
systems (Figure 12). Wiring diagrams show the component parts in pictorial form, and the
components are identified by name. Most wiring diagrams also show the relative location of
component parts and color coding of conductors or leads.


wiring diagram


wiring diagram

conductor properties



Temperature Coefficient of Resistance

Temperature coefficient of resistance, a (alpha), is defined as the amount of change of the
resistance of a material for a given change in temperature. A positive value of a indicates that
R increases with temperature; a negative value of a indicates R decreases; and zero a indicates
that R is constant. Typical values are listed in Table 2.

Temperature coefficient


Electric Circuit

Each electrical circuit has at least four basic parts: (1) a source of electromotive force,
(2) conductors, (3) load or loads, and (4) some means of control. In Figure 13, the source of
EMF is the battery; the conductors are wires which connect the various component parts; the
resistor is the load; and a switch is used as the circuit control device.


electrical circuit


A short circuit is a circuitshort circuit
which offers very little
resistance to current flow
and can cause dangerously
high current flow through a
circuit (Figure 15). Short
circuits are usually caused
by an inadvertent connection
between two points in a
circuit which offers little or
no resistance to current flow.
Shorting resistor R in Figure
15 will probably cause the
fuse to blow.



Series Circuit

A series circuit is a circuit where there is only one path for current flow. In a series circuit
(Figure 16), the current will be the same throughout the circuit. This means that the current flow
through R1 is the same as the current flow through R2 and R3.


series circuit


parallel circuit




<previous  BASIC DC THEORY 2   next>

Hardsteel Media © 2012-2018 THE ELECTRICIANS HANGOUT All Rights Reserved